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Three criteria are proposed to select an appropriate stochastic simulation technique:
1) the implementation of the technique must allow realizations to be generated with
a reasonable amount of human-involvement and CPU time, 2) all relevant prior
information must be honored, and 3) the realizations should generate the largest
space of uncertainty. These criteria are independent of the mechanism or random
function (RF) underlying the stochastic simulation technique. This paper compares
algorithmically-defined random function models, such as those based on simulated
annealing, to analytically defined random function models, such as the multiGaussian
model,

Stochastic simulation techniques based on these different random function models
are presented. An example is presented which illustrates the relative advantages
of algorithmically-defined and analytically defined techniques. The mathematical
cleanliness and internal consistency of analytical models must be balanced against
the flexibility of algorithmically-defined models.

INTRODUCTION

The generation of alternative numerical models or images of spatially-varying at-
tributes that account for the known aspects of the spatial distribution is generally
referred to as stochastic simulation or stochastic imaging. For practical problems,
the stochastic realizations must be further processed by a transfer function, e.g.,
a program that simulates the mining operation or the fluid flow in an aquifer or
petroleum reservoir. Generating the stochastic realizations is the first step; it is the
performance of the models that matters. This paper will focus on the petrolenm
reservoir context; many of the conclusions and examples, however, apply to other
areas of application.

In practice, the spatial distribution of porosity and permeability must be mod-
eled using information from many sources: a limited number of good quality well
data, a greater number of indirect seismic data, knowledge of the geological setting,
and interpretations from a limited number of well tests. The reservoir management
problem is to assess the performance of a number of alternative production scenarios.

Given sparse sampling and uncertainty in the available data there should not be
a unique model of the spatial distributions of porosity and permeability. The idea
behind stochastic reservoir modeling is to generate a number of alternative numerical
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Figure 1: A schematic illustration of stochastic reservoir modeling. The first step consists
of establishing the spatial distribution of rock and fluid properties. In reality, there is only
one true distribution of these properties, yet, there can be many stochastic realizations of
that distribution. The next step is the implementation of the recovery scheme. In reality,
the recovery scheme may be implemented only once in the field. A flow simulator provides
a numerical model of the recovery scheme using each alternate input model. Finally, there
is only one true reservoir response, but there is a distribution of possible responses given
the alternate stochastic realizatigns which can be generated.
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models (called realizations) that are all consistent with the known data. Uncertainty
in the prediction due to uncertainty in the rock/fluid properties can be quantified by
running a flow simulation program on a number of alternate numerical models.

This concept is contrasted with the reality of a single true distribution of rock
properties in Figure 1. The first step in a reservoir modeling exercise is to establish
the spatial distribution of rock and fluid properties (upper portion of Figure 1).
Although, there is only one true distribution of these properties in reality, yet, there
can be many stochastic realizations of the spatial distribution, each of which is
consistent with the available data.

The next step is to consider the proposed recovery scheme (central portion of
Figure 1). The actual recovery scheme, symbolized by the drilling rig, can be imple-
mented only once in the actual reservoir. A flow simulation program, symbolized by
the computer, provides a numerical model of the recovery scheme for each realization.

Finally, as illustrated at the bottom of Figure 1, there is only one true value
for each response variable (e.g., hydrocarbon recovery, breakthrough time, flow rate,
bottom hole pressure, etc.). Each realization potentially yields a different response
providing a probability distribution for each response variable. In practice, the true
response remains unknown until it is too late to alter the recovery scheme. The
simulated distributions of response variables can be used to assess the risk involved
with any particular recovery scheme.

There are many techniques for stochastic simulation. Given a choice between
two techniques which one should be preferred? The first practical criterion is that
all potentially good methods must be feasible, i.e., they must generate plausible
realizations in a reasonable amount of time (both human and CPU time). If two
candidate techniques pass this first criterion (see the bottom of Figure 1) the spread
of the output distribution should be maximized to increase the chance that this
output distribution includes the true value (of bottom Figure 1). This relates to the
mazimum entropy concept used in information theory [11,18].

An important aspect of the maximum entropy approach is to consider an out-
put distribution conditional to all the information available; the spread or entropy
of the output distribution should not be artificially expanded by geologically im-
plausible realizations or those inconsistent with observed data. An appreciation for
the plausibility of a model, based on experience and an understanding of the geo-
logical processes that created the reservoir, is yet another piece of information that
constrains the output distribution.

Another important point is that the entropy to be maximized is that of the
response (output) distributions and not that of the input realizations. The output
response variables are related to the input spatial distributions through a specific
transfer function (flow simulator); however, that transfer function is usually very
complex and non-linear. Even though spatial entropy of the input realizations can
be defined and predicted (see [15]), in general, its relation to the entropy of the
response or output distribution is not known a priori.

The spread of a response distribution is sometimes referred to as a space of uncer-
tainty. The extent of that space, i.e., the uncertainty about the output is necessarily
related to the model for input uncertainty. To summarize, a good technique:

1. Must generate plausible realizations in a reasonable amount of time. The time
refers to the human and the CPU time required for the initial set up and the
repeated application of the technique.

2. Allows the maximum prior information to be accommodated. This is the only
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direct way to ensure that the output distribution is as accurate as possible.

3. Explores the largest space of uncertainty for the output, i.e., one that generates
a maximum entropy distribution of response variables.

These criteria provide the basis for comparison of different simulation techniques and

RF models.
RANDOM FUNCTION MODELS

A random function (RF), defined over some field of interest, e.g., {Z(u),u € study
area A}, is characterized by the set of all its K-variate cdf’s for any number K and
any choice of the K locations ug, k=1,..., K:

F(uy,...,ux2,...,2k) = Prob{Z(w) < z,...,2(ux) < zx} (1)

Just as a univariate probability distribution (cdf) may be used to characterize uncer-
tainty about a single value z(u), the multivariate cdf (1) may be used to characterize
joint uncertainty about the K values 2(u,),...,2z(ux).

Stochastic simulation is the process of drawing alternative, equally probable, joint
realizations from a RF model. The (usually gridded) realizations {z{)(u),u € A}
l=1,...,L represent L possible images of the spatial distribution of the attribute
values z(u) over the field A. Each realization reflects the properties imposed on the
RF model Z(u). As mentioned above, the more properties that are inferred from the
sample data and incorporated into the RF model Z(u), the better that RF model.

An analytical RF is one where the multivariate distribution is known analytically
and may be written in a mathematically concise expression. An algorithmically-
defined RF model is one where the multivariate probability distribution is observed
by generating alternative realizations. In the case of algorithmically-defined RF
models, there is no need for a mathematical definition of the distribution; the only
requirement is a repeatable algorithm to generate stochastic realizations that honor
the conditioning data and spatial statistics. The obvious advantage of analytically-
defined RF models is that they may be studied theoretically; the mathematical
consistency allows proofs, theorems, and limit (stationary and ergodic) properties to
be evaluated a priori.

The best example of an analytically-defined RF model is the Gaussian RF model.
Most analytically-defined RF models are related to the Gaussian model in some way.

The Gaussian RF Model

The Gaussian RF model is unique in statistics for its analytical simplicity and for
being the limit distribution of many analytical theorems known as “central limit the-
orems” [2,12]. Some characteristic properties of the multivariate Gaussian (normal)

RF model Y (u) are:
e all subsets {Y(u),u € B C A} are also multivariate normal.
e all linear combinations of the components of Y(u) are (univariate) normally
distributed, e.g.,

X = ) w,Y(u,) is normally distributed,

a=1
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Y the weights w,, as long as u, € A,

¢ zero covariance (or correlation) entails full independence: If Cov{Y(u),Yéu’)} =
0, the two RV’s Y(u) and Y (u’) are not only uncorrelated, they are indepen-
dent.

e all conditional distributions of any subset of the RF Y (u) are (multivariate)
normal.

The Gaussian RF is the only analytically-defined RF model considered in this
paper. The following discusses two different algorithmically-defined RF models. The
indicator RF model, discussed first, has a better theoretical pedigree [13,16] than the
annealing RF model, discussed last.

The Indicator RF Model

Indicator kriging of a continuous variable is not aimed at estimating the indicator

transform 1, if z(u) <
i o y if z(u) < z
H(u;2) = { 0, otherwise @)

Indicator kriging provides a least-squares estimate of the conditional cumulative
distribution function (cedf) at cutoff z:

(i z)]” = B {I(;2|(n)}" 3)
= Prob" {Z(u) < z|(n))

Il

where (n) represents the conditioning information available in the neighborhood of
location u. .

The IK process is repeated for a series of K cutoff values z, k = 1,..., K, which
discretize the interval of variability of the continuous attribute z. The conditional
cdf, built from assembling the K indicator kriging estimates represents a probabilistic
(RF) model for the uncertainty about the unsampled value z(u).

If z(u) is a continuous variable, then the optimum selection of the cutoff values
2y at which indicator kriging takes place is essential: too many cutoff values and the
inference and computation becomes needlessly tedious and expensive; too few, and
the details of the distribution are lost.

In indicator kriging the K cutoff values z, are usually chosen so that the corre-
sponding indicator covariances C'y(h; z;) are different one from another. There are
cases, however, when the sample indicator covariances/variograms appear propor-
tional to each other, i.e., the sample indicator correlograms are all similar in shape.
The c?lrresponding continuous RF model Z(u) is the so-called “mosaic” model [14]
such that:

pz(h) = pi(h; z¢) = pr(h; 2k, 20), Vg, 200 (4)

where pz(h) and p;(h; 2z, z1) are the correlograms and cross correlograms of the
continuous RF Z(u) and its indicator transforms.

Indicator kriging under the mosaic model (4) is called “median indicator kriging”
[13]. It is a particularly simple and fast procedure since it calls for a single easily
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inferred variogram (often the median indicator variogram) that is used for all K
cutoffs.

The Annealing RF Model

In the “annealing” approach to stochastic simulation there is no explicit random
function model. %la.ther, the creation of a simulated realization is formulated as an
optimization problem to be solved with a numerical optimization technique (seminal
references for the application of these techniques to spatial problems include [8,9,17,
19]). The first requirement of this class of methods is the construction of an objective
(or energy) function which is some measure of difference between the desired spatial
characteristics and those of a candidate realization.

The global optimization technique most often used to obtain such realizations is
based on an analogy with the metallurgical process of annealing. Annealing is the
process by which a material undergoes extended heating and is slowly cooled. Ther-
mal vibrations permit a reordering of the atoms/molecules to a structured lattice,
i.e., a low energy state. In the context of 3-D numerical modeling, the annealing
process may be simulated through the following steps:

1. An initial 3-D numerical model (analogous to the initial metal in true anneal-
ing) is created, for example, by assigning a random value at each grid node by
drawing from the population distribution.

2. An energy function (analogous to the Gibbs free energy in true annealin
defined as a mea.sure of difference between desired spatial features and those
of the realization. For example, the energy or objective function could be the
sum of the squared difference between the variogram of the realization and a
model variogram over a predefined set of lag distances.

3. The image is perturbed, for example, by swapping pairs or sets of values taken
at random locations in the 3-D numerical model (this mimics the thermal
vibrations in true annealing).

4. The perturbation (thermal vibration) is always accepted if the energy is de-
creased; it is accepted with a certain probability if the energy is increased (the
Boltzmann probability distribution of true annealing). Technically, the name
“simulated annealing” applies only when the acceptance probability is based on
the Boltzmann distribution [1,17] Through common usage, however, the name
“annealing” is used to describe the entire family of methods that are based on
this optimization principle.

5. Continue the perturbation procedure while reducing the probability with which
unfavorable swaps are accepted (lower the temperature parameter of the Boltz-
mann distribution) until a low energy state is achieved.

6. Low energy states correspond to plausible numerical models (realizations).

At first glance this approach appears terribly inefficient; millions of perturbations
may be required to obtain an image having the desired spatial structure. These
methods, however, are more efficient than they might seem as long as only a few
arithmetic operations are required to update the objective function after each per-
turbation. Virtually all conventional spatial statistics (e.g., covariances/correlations)
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may be updated locally (considering only a few locations) rather than recalculated
globally (considering all locations).

The objective function is defined as some measure of difference between a set
of reference properties and the corresponding properties of a candidate realization.
The reference properties could consist of any quantified geological, statistical, or
engineering property. Some examples include two-point transition probabilities [8,
5], seismic data Q’ mutiple-point statistics [3,10], and well test-derived effective:
properties [4]. Traditional two-point variogram/covariance functions and correlation
coefficients with a secondary attribute will be considered in this paper. The real
advantage of annealing is this ability to integrate many disparate sources of data.

A modified version of the public domain sasim source code documented in [6]
was used for the examples presented below.

AN EXAMPLE

A cross section bounded by two wells is shown at the top of Figure 2. The rock
is a binary mixture of sandstone (1000md) and shale (0.0lmd). The gray-shaded
profile next to each well represents the shale proportion for the corresponding vertical
interval; white corresponds to 0% shale and black to 100% shale. The absolute
permeability of each vertical interval was taken as the geometric average of the
component sandstone and shale fractions. The histogram of shale proportion, 50
values from each well, is given on the lower-left of Figure 2. The variogram model of
shale proportion (standardized to a unit sill) is shown on the lower-right of Figure 2.
Note that the vertical extent of the cross-section is 10 meters (5 times the vertical
variogram range) and the horizontal extent is 25 meters (2.5 times the horizontal
variogram range).

The stochastic simulation problem is to construct representative 2-D models of
the shale proportion and convert them to elementary grid-block permeabilities (here
using a geometric average of the component shale and sandstone).

Three candidate stochastic simulation techniques based on three different RF
models were considered: multiGaussian (sgsim program in GSLIB [6]), indicator
(sisim [6]), and simulated annealing (sasim [6]). The objective function in sasim
was the variogram for 50 lags (ns = 50) covering all directions:

0 = 3" b (ki) — (k)P (5)

=1

where n), is the number of variogram lags to be honored v*(k;) is the variogram of
the realization for lag h;, and y(k;) is the model variogram.

One hundred realizations were generated by each technique. The CPU time
requirements are shown on Table 1. The time to generate 100 realizations varies
from 15 minutes for sgsim to 4 hours for sisim (10 cutoffs). Two realizations
from the Gaussian, indicator, and annealing RF models are shown on Figure 3; the
realizations appear quite different due to characteristics of the RF model beyond the
bivariate (variogram) level. All of the methods, however, appear plausible and meet
the first criterion, i.e., they generate plausible realizations in a reasonable amount of
time.

A transfer function is required to judge the space of uncertainty that is sam-
pled by each RF model. The response variable selected here is the effective absolute
permeability in the horizontal direction. Many other flow-related response variables




ALGORITHMICALLY-DEFINED RANDOM FUNCTION MODELS 429

Well 1 Well 2 !

IE

wom

Shale Proportion

Number of Data 100
mean 0.28

020 cosf ol var 0.72
maximum 089
medan 0.32

Figure 2: A gray scale plot of the two wells (at the far right and far left sides), a histogram
of the 100 data and a model variogram.

~Algorithm Program Total CPU Time Relative
Time(min) (sec/node)  Time
Gaussian sgsim ; 0.0037 1.0
Indicator (median approx.) sisim 30.0 0.0072 2.0
Indicator (10 cutoffs) sisim 238.7 0.0573 15.5
Annealing (50 lags) sasim 109.2 0.0262 7.1

Table 1: The CPU time, measured on a Silicon Graphics Crimson workstation, required
to generate 100 simulations each with 2500 nodes. The time to simulate one node is also
shown. The relative times are with respect to the sgsim program.
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SGSIM Reah' tion

Figure 3: Two realizations of the multiGaussian RF (top), the indicator RF (center), and
the annealing RF (bottom).
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depend on the permeability. Histograms of the horizontal effective absolute perme-
ability are shown on Figure 4.

The center of these distributions (the most likely response) and the spread (a
measure of uncertainty) are significantly different for each simulation technique. The
measures of the spread of the distribution are the standard deviation and the width
of the 95% probability interval (shown below each histogram).

To extend this example further, suppose that we knew that the sandstone units
(low shale proportion) had a greater continuity in the horizontal direction and less
continuity vertically. The overall continuity is represented by the variogram (Fig-
ure 2), however, we now have the added indicator variogram model, see Figure 5, for
the shale proportions less than 5%.

The Gaussian RF cannot directly account for this information. One could con-
sider a mixture of two Gaussian RF models. The indicator RF model can integrate
this information. However, the typical order relations corrections make it difficult
to honor an indicator variogram for an extreme threshold and the overall variogram
simultaneously. The annealing RF model can integrate this information by simply
adding a component to the objective function:

0 = Y1 (h) = 1k + 3535 [y (he) = (8] (6)

i=1 j=1i=1

where there are n. indicator variograms (one in this case). The number of lags
ny = 50 will be constant for both the variogram and the single indicator variogram.
Two realizations using this objective function are shown on Figure 6. Notice the
increased continuity of the sand (white).

One hundred realizations were generated and the horizontal effective permeability
was computed, see Figure 7. Notice that the center of the distribution has changed
significantly; it has more than doubled from the previous runs (Figure 4). Further,
the spread of this distribution has increased. The uncertainty should decrease as
more information becomes available. The implication is that the uncertainty shown
on Figure 4 is optimistic. It is a fairly general observation, that conventional measures
of uncertainty used in geostatistics tend to increase rather than decrease as more
information becomes available.

REMARKS AND CONCLUSIONS

The multivariate probability law of RF models implicit to most simulation algo-
rithms, aside from the multiGaussian RF, is usually too complex to be defined and
understood analytically. The main advantages of an analytically-defined RF, math-
ematical cleanliness and internal consistency, are of no benefit when the response
variable is obtained from a non-linear transfer function, such as a flow simulator.
The output distributions of uncertainty, in general, are obtainable only by generat-
ing multiple realizations.

RF models which are inferred by generating a number of realizations and ob-
serving the multivariate probability law are refered to as algorithmically-defined RF
models. The main advantage of these RF models is the flexibility to integrate addi-
tional data from various sources.

The RF models discussed in this paper are a fair sample of commonly used
techniques. There are many other RF models that could have been discussed, e.g.,
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Figure 4: Histograms of the horizontal effective permeability for 100 realizations of the
tiGaussian RF (top), the indicator RF (center), and the annealing RF (bottom). The 95%

probability interval and the median is shown below each histogram.
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Figure 5: The model indicator variogram for the sandstone (low shale proportion).

SASIM Realization (with indicator)

Figure 6: Two realizations of the annealing RF honoring the variogram and an indicator
variogram.
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Figure T: Histogram of the horizontal effective permeability for 100 realizations of the
annealing RF honoring the variogram and an indicator variogram. The 95% probability
interval and the median are shown below the histogram.
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e The RF model implicit in the use of fractals is multiGaussian. The implemen-

tation is significantly different from that for the sequential algorithm adopted
in GSLIB FS] 3

e The RF model underlying the new, and fairly popular, probability field simula-
tion is also algorithmically-defined; its multivariate probability. characteristics
are understood with repeated applications.

e Boolean algorithms and their extension, marked point processes are generated
by the distribution of geometric objects in space according to some probability
laws. The multivariate distribution of most marked point processes is usually
too complex to be analytically defined and understood.

Generating the stochastic realizations is the first step; it is the performance of the
models that matter. Processing each stochastic realization with the a flow simulator
allows the uncertainty to be quantified. Since reality is certain, it is difficult to vali-
date our quantification of uncertainty; we cannot actually measure real uncertainty.
Nevertheless, the concept of quantifying uncertainty is useful if only to evaluate its
impact on the project at hand.

Perhaps the goal should be to obtain a limited number of realizations, constrained
by all the data, to predict the center of the output response variable distribution.
All models of uncertainty are but models; there is no full or largest measure of
uncertainty in absolute.
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